Introduction

In the past decade, there have been several large property losses at industrial plants caused by combustible dust explosions. While combustible dust explosions have been commonly associated with occupancies such as grain elevators, some of the more recent losses have involved dusts which many people did not know were explosive, such as sugar, metal and plastic dusts.

Some recent examples of dust explosion losses in the U.S. include:

- **A sugar dust explosion in Georgia on February 7, 2008**: This facility manufactures sugar and has been in business for over 100 years. The explosion caused major damage to parts of the processing area, packaging buildings, palletizer room, silos and bulk train car loading area. The explosion was fueled by significant accumulations of combustible sugar dust throughout the packaging department. A total of 14 people were killed and 38 were injured.

- **A phenolic resin dust explosion in Kentucky on February 20, 2003**: The plant manufactured fiberglass insulation for the automotive industry. A fire in a malfunctioning oven ignited a cloud of phenolic resin dust generated during the cleaning of a production line. The dust explosion caused extensive damage to the production area. Seven people were killed and 37 were injured.

- **A plastic powder dust explosion in North Carolina on January 29, 2003**: The facility manufactured rubber stoppers and other products for medical use. Accumulated polyethylene dust above a suspended ceiling fueled an explosion and ensuing fire that heavily damaged the production building and adjacent warehouse. Due to the extensive damage, it was not possible to definitively determine the event that dispersed the dust or what ignited it. Six people were killed and 38 were injured.

According to the U.S. Chemical Safety and Hazard Investigation Board (CSB), there were more than 280 dust explosions from 1980 to 2005, resulting in 119 deaths and 718 injuries. Many employees, even those well trained in the safety routines of their facility, were unaware of the dust hazards.

Combustible dust explosion hazards exist in a variety of industries, including, but not limited to: agriculture, chemicals, pharmaceuticals, food (e.g., candy, sugar, spice, starch, flour, feed), grain, fertilizer, tobacco, plastics, wood, paper, pulp, rubber, furniture, textiles, pesticides, tire manufacturing, dyes, coal, metal processing (e.g., aluminum, chromium, iron, magnesium, and zinc), recycling operations, and fossil fuel power generation (coal).

Dust Explosion Basics

Most organic based materials can be explosible and some of the more common explosive dusts include grain, starch, flour, sugar, coal, paper and wood. In addition, many inorganic dusts can also be surprisingly explosible. Some common examples include metals, plastics, powder coat materials, rubbers and pharmaceuticals. See Appendix A for a more comprehensive list of combustible dusts that can be explosible.
The following four conditions are required for a dust explosion to occur:

1. **Combustible dust** – The dust particles must be combustible and small enough to be explosible. The National Fire Protection Association (NFPA) historically characterized combustible dust by size (≤ 420 microns in diameter or about the size of granulated sugar). However, the definition was revised to “a finely divided combustible particulate solid” to account for particle shape and surface area to mass ratio, such as for flakes and fibers.

 As a general rule, any combustible particulate with a minimum dimension ≤ 500 microns has the potential to be a combustible dust. Typically, the smaller the dust particle, the more explosible it is. When in doubt, have the dust tested.

2. **Ignition source** – A sufficient source of energy is required to ignite the dust. Typical examples include open flames, smoking, cutting, welding, grinding, frictional heat, hot surfaces, ordinary electrical equipment, mechanical impacts, electrostatic discharges, etc.

3. **Suspension** – The dust must be suspended in air (or other oxidizing medium) and must be within sufficient concentration for an explosion to occur. Like flammable vapors, the dust concentration can be “too rich” or “too lean” to explode.

4. **Confinement** – The dust must be in a confined space, which allows for rapid pressure build-up. Typical examples include enclosed buildings, process equipment, silos/bins, dust collection systems, conveyors, etc.

 Note: The rapid burning of combustible dust in an unconfined space will still create a hazardous flash fire.

Since all four conditions must take place at the same place at the same time, dust explosions are relatively rare events; however, they can produce catastrophic consequences as highlighted in the above losses.

A dust explosion can be the result of a single event; however, more often it is a series of several explosions occurring within seconds or even milli-seconds. For example, an upset condition occurs inside process equipment handling combustible dust, which causes an initial (primary) explosion. The primary explosion creates a shock wave throughout the facility that dislodges dust accumulations from various surfaces (i.e. building structural members, equipment, etc.). The dust is suspended in air and then ignited by the primary dust flame, which creates secondary explosions.

The majority of property damage is caused by fugitive dust accumulations within the building or process compartment. **The key to preventing combustible dust explosions is to control fugitive dust accumulations.** The photos below depict areas with significant accumulations of fugitive dust.
ARC Recommendations

While not all inclusive, the following basic loss prevention guidelines can greatly reduce the potential for property damage and resulting business interruption caused by combustible dust explosions:

1. Determine if your site handles any combustible dusts. Even if the dust is not listed in Appendix A, it could still be combustible. If in doubt, have the dust(s) tested by a qualified laboratory.

2. If the dust is explosible, have a qualified fire protection engineer perform a process hazard analysis (PHA) of the facility and processes in accordance with the latest edition of NFPA 654, *Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids*. The PHA should be documented and include written recommendations that will prevent and mitigate fires and dust explosions in the facility. The PHA should be reviewed and updated as needed at least every five years.

3. Develop and implement written procedures to manage change to process materials, technology, equipment, procedures and facilities (Management of Change). Even if properly designed and installed initially, many materials, processes and equipment change over time.

4. Control and limit fugitive dust accumulation throughout the facility as follows:

 a) Design and maintain all dust handling processes and equipment to minimize the release of fugitive dust. Any dust release prevention measure will significantly reduce the cost associated with cleaning and hazardous electrical equipment installation.

 b) Implement an effective housekeeping program with regular cleaning frequencies to ensure that the accumulated dust levels on walls, floors, and horizontal surfaces such as equipment, ducts, pipes, hoods, ledges, beams, and above suspended ceilings and other concealed surfaces, such as the interior of electrical enclosures, does not exceed 1/32 in. (0.8 mm).

 c) Preferably remove fugitive dust accumulations by vacuum cleaning. The equipment should be listed for Class II, Division 2 hazardous locations or use a fixed pipe system with a remotely located dust collector. Compressed air should only be used if all electrical equipment in the area is shut off or listed for Class II, Division 2 hazardous locations, and all other potential ignition sources are removed from the area.

5. Control ignition sources in areas handling combustible dust as follows:

 a) Ensure electrical equipment is listed for Class II hazardous locations.

 b) Ensure equipment is properly grounded and bonded to prevent electrostatic discharge.

 c) Use separator devices to remove foreign materials capable of igniting combustible dusts, such as tramp metal.

 d) Implement an effective hot work management program to control the hazards of cutting, welding, grinding, etc.

 e) Enforce no smoking policy.

 f) Maintain equipment to prevent breakdown, which can lead to ignition (i.e. belts, bearings, clearances between moving parts, electrical loading, etc.).

 g) Use industrial trucks approved for the electrical classification of the area.

6. Preferably locate dust collectors outdoors and equipped with explosion relief venting. If located indoors, explosion relief should be vented to a safe area outdoors or explosion suppression provided.
References

NFPA 61, Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities, 2008 Edition

NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2007 Edition

NFPA 70, National Electrical Code®, 2011 Edition

NFPA 499, Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas, 2008 Edition

NFPA 505, Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Conversions, Maintenance, and Operations, 2011 Edition

Occupational Safety and Health Administration (www.osha.gov)

U.S. Chemical Safety and Hazard Investigation Board (www.csb.gov)

Note: The CSB website has investigative reports on many types of industrial chemical accidents, including combustible dusts. There are several excellent combustible dust videos in the Video Room, including the following: Combustible Dust: An Insidious Hazard; Inferno: Dust Explosion at Imperial Sugar; Iron in the Fire; U.S. Chemical Safety Board Iron Dust Testing.

Questions or comments?

Please contact:
Brent Greider,
Sr. Consulting Engineer
Allianz Risk Consulting, LLC
+1.630.879.3387
bgreider@aic-allianz.com
Appendix A – Combustible Dusts (not all inclusive)

Agricultural Products
Egg white
Milk, powdered
Milk, nonfat, dry
Soy flour
Starch, corn
Starch, rice
Starch, wheat
Sugar
Sugar, milk
Sugar, beet
Tapioca
Whey
Wood flour

Agricultural Dusts
Alfalfa
Apple
Beet root
Carrageen
Carrot
Cocoa bean dust
Cocoa powder
Coconut shell dust
Coffee dust
Corn meal
Cornstarch
Cotton
Cottonseed
Garlic powder
Gluten
Grass dust
Green coffee
Hops (malted)
Lemon peel dust
Lemon pulp
Linseed
Locust bean gum
Malt
Oat flour
Oat grain dust
Olive pellets
Onion powder
Parsley (dehydrated)
Peach

Peanut meal and skins
Peat
Potato
Potato flour
Potato starch
Raw yucca seed dust
Rice dust
Rice flour
Rice starch
Rye flour
Semolina
Soybean dust
Spice dust
Spice powder
Sugar (10x)
Sunflower
Sunflower seed dust
Tea
Tobacco blend
Tomato
Walnut dust
Wheat flour
Wheat grain dust
Wheat starch
Xanthan gum

Metal Dusts
Aluminum
Bronze
Iron carbonyl
Magnesium
Zinc

Carbonaceous Dusts
Charcoal, activated
Charcoal, wood
Coal, bituminous
Coke, petroleum
Lampblack
Lignite
Peat, 22%H2O
Soot, pine
Cellulose
Cellulose pulp
Cork
Corn

Chemical Dusts
Adipic acid
Anthraquinone
Ascorbic acid
Calcium acetate
Calcium stearate
Carboxy-methylcellulose
Dextrin
Lactose
Lead stearate
Methyl-cellulose
Paraformaldehyde
Sodium ascorbate
Sodium stearate
Sulfur

Plastic Dusts
(poly) Acrylamide
(poly) Acrylonitrile
(poly) Ethylene (low-pressure process)
Epoxy resin
Melamine resin
Melamine, molded (phenol-cellulose)
Melamine, molded (wood flour and mineral filled phenol-formaldehyde)
(poly) Methyl acrylate
(poly) Methyl acrylate, emulsion polymer
Phenolic resin
(poly) Propylene
Terpene-phenol resin
Urea-formaldehyde/cellulose, molded
(poly) Vinyl acetate/ethylene copolymer
(poly) Vinyl alcohol
(poly) Vinyl butyral
(poly) Vinyl chloride/ethylene/vinyl acetylene suspension copolymer
(poly) Vinyl chloride/ vinyl acetylene emulsion copolymer