DEGRADATION AND RESILIENCE OF PRE-CRACKED PV-MODULES

AGCS Expert Days 2017, November 2nd, 2017, München

Dr.-Ing. Claudia Buerhop
PV-inspection
Performance study of pre-cracked modules

Visualization of cracks using imaging techniques

Electroluminescence EL-imaging

EL-images visualize e. g.

- **cracks** in solar cells \rightarrow normally no impact on electrical power output
- Electrically **inactive cell area** by differing shades of grey and black \rightarrow impact on electrical power output

Nominal module power $P_0 = 232.2$ W

Actual module power $P = 228.8$ W
Study of crack evolution in PV-modules at real operating conditions

1. EL-imaging – visualization of cracks in PV-modules, and now?
2. Experimental study – field test, lab study and FEM-simulations
3. Case study I – cleaning procedure
4. Case study II – severe storm event
Performance study of pre-cracked modules

How does the module look like after one year of field exposure?

At the beginning

Module 165

© ZAE Bayern

AGCS Expert Days 2017, Green Energy, November 2./3., 2017, Buerhop

Option A: unchanged

Option B: Low impact

Option C: Strong impact

P0/P0 = 100%
P/P0 = 99%
P/P0 = 98%
P/P0 = 97%
Performance study of pre-cracked modules

Approach

Field study

• 54 modules pre-cracked
• 1 year → continuous monitoring of weather data, string power, module temp.
• → 3 times: IR-, EL- imaging, module power

Load testing in the lab

• 20 modules pre-cracked
• Static loading – over- and underpressure – simulating snow and wind loads
• EL-imaging, IV-curves, strain measurements

FEM-simulations

• Abaqus
• Stress distribution
Field exposure

PV-plant and weather conditions (in Bavaria, Oct. 2015 - Dec. 2016)

Test facility

- Module mounting system
- Over- and underpressure
- EL-imaging (InGaAs-camera, 100 Hz)
- Strain gauges
- „Mobile flasher“
Lab testing

EL-images with increasing loading and unloading

- At loading → crack opening
- At unloading → crack closure
Lab testing

Power outcome at loading and unloading

Module 484

Lab testing

Wind and snow loads

- **V\text{\scriptsize max} = 137 \text{ km/h}**
- **V\text{\scriptsize mean} = 32 \text{ km/h}**

Lab testing

EL-images at loaded (400 Pa + 5000 Pa) and unloaded state

EL-images at ex-post loaded state simulating normal operating conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
<th>Image 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>P/P0 = 100%</td>
<td>P/P0 = 98%</td>
<td>P/P0 = 89%</td>
<td>P/P0 = 98%</td>
<td>P/P0 = 99%</td>
</tr>
<tr>
<td>at p = 0 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 400 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at p = 5000 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After p = 5000 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at p = 0 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 300 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 400 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module 165
© ZAE Bayern
AGCS Expert Days 2017, Green Energy, November 2./3., 2017, Buerhop
FEM-simulations

Stress distribution across the material layers

Simulation assumptions:
- Static, planar loads
- No busbars, no gridfingers
- No cracks
- Linear, elastic material properties
FEM-simulations

Stress distribution on cell level

Quarter model, $p = 1000 \, \text{Pa}$

FEM-Simulation vs. EL-images

Crack orientation

loaded state

FEM-simulation

Difference image between EL-images of loaded and intial state

Unloaded state

Module 744, 3600 Pa
EL-image – crack distribution

Difference image between EL (4600 Pa) and EL (0 Pa)

Field exposure

PV-plant and weather conditions (in Bavaria, Oct. 2015 - Dec. 2016)

Max. wind speed

Field data

EL-imaging

Oct 2015

May 2016 / Oct 2016

- No newly cracked cells
- Changes in intensity distribution possible
Field data

Module power measurement

module power in W

module ID with description

INV 1
moderate + few cracks

INV 2
good + few cracks

INV 3
bad + cracks

INV 4
moderate + cracks

INV 5
mixed

INV 6
mixed

Oct 2015 May 2016 August 2016

Performance study of pre-cracked modules

Conclusion – static planar loading = simulating snow or wind loads

At the beginning

Option A: unchanged

- Cracks open and close
- Open cracks → power loss possible
- Moderate weather conditions including several severe wind scenarios → no detectable / measurable changes

• Existing cracks do not necessarily impact the performance negatively at real operating conditions.
Case study I - Cleaning of PV-systems
Case study I - Cleaning of PV-systems
Case study I - Cleaning of PV-systems

BEFORE loading procedure = cleaning

P = 228W

AFTER loading procedure = cleaning

P = 227W

Walking over modules
Case study I - Cleaning of PV-systems

Simulating subsequent „normal“ operating conditions

\(v_{\text{wind}} = 55 \text{ km/h} \)
\(h_{\text{snow}} = 5 \text{ cm (wet snow)} \)
\(- 20 \text{ cm (fresh snow)} \)

\(v_{\text{wind}} = 96 \text{ km/h, storm} \)
\(h_{\text{snow}} = 15 \text{ cm (wet snow)} \)
\(- 60 \text{ cm (fresh snow)} \)

\(v_{\text{wind}} = 124 \text{ km/h} \)

\(p = 0 \text{ Pa} \)
\(p = 200 \text{ Pa} \)
\(p = 600 \text{ Pa} \)
\(p = 1000 \text{ Pa} \)
\(p = 0 \text{ Pa} \)

\(\frac{P}{P_0} = 100\% \)
\(\frac{P}{P_0} = 99\% \)
\(\frac{P}{P_0} = 91\% \)
\(\frac{P}{P_0} = 89\% \)
\(\frac{P}{P_0} = 99\% \)
Case study II - Extreme weather events

Hurricanes or hail storms

Cadolzburg, Germany,
18th August 2017
Max. wind speed = 91 km/h
source: www.wetteronline.de
Case study II - hail storm

Simulating subsequent „normal“ operating conditions

\[p = 0 \text{ Pa} \quad \quad p = 200 \text{ Pa} \quad \quad p = 400 \text{ Pa} \quad \quad p = 1000 \text{ Pa} \quad \quad p = 0 \text{ Pa} \]

\[v_{\text{wind}} = 55 \text{ km/h, high wind} \]
\[h_{\text{snow}} = 5 \text{ cm (wet snow)} \quad - 20 \text{ cm (fresh snow)} \]

\[v_{\text{wind}} = 78 \text{ km/h, strong gale} \]
\[h_{\text{snow}} = 10 \text{ cm (wet snow)} \quad - 40 \text{ cm (fresh snow)} \]

\[v_{\text{wind}} = 124 \text{ km/h, hurricane force} \]

\[\frac{P}{P_0} = 100\% \quad \quad \frac{P}{P_0} = 100\% \quad \quad \frac{P}{P_0} = 100\% \quad \quad \frac{P}{P_0} = 97\% \quad \quad \frac{P}{P_0} = 99\% \]
Degradation of pre-cracked PV-modules

Cell cracks – only half as bad?
Degradation of pre-cracked PV-modules

• loading tests in the lab
 → At low loads – existing cracks open
 → At high loads – new cracks are initiated
 -- power reduction due to open cracks

• field measurements
 → At moderate weather – no measurable/visible changes

• „Long-term performance of cracked PV-modules?“
 → First answers: Resilience and mechanical stability of pre-cracked PV-modules
THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGEMENT
ZAE Bayern gratefully thanks the German Federal Ministry for Economic Affairs and Energy (BMWi) for financial funding of this project.

We thank the Allianz Risk Consulting GmbH /Allianz Zentrum für Technik (AZT) gratefully for providing the batch of PV-modules and supporting this study.